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Abstract — As computing power and algorithmic
advances have evolved significantly in the recent past, it is
now feasible to solve complex electromagnetic (EM)
problems involving scattering, radar cross section,
antenna design, microwave circuit design, artificial EM
materials, etc. using full-wave numerical methods. Several
general-purpose commercial software packages are
routinely used in industry in all these domains for EM
analysis or design. However, the task of processing large
sets of data output from these design studies and analyses
is generally beyond the realm of commercial software
packages, and the designer spends many hours writing
problem-specific computer programs to extract the
desired performance parameters. Determination of
coupling coefficients or the unloaded quality factor of a
dielectric resonator, de-embedding feed lines from
antenna currents, removal of discontinuity effects, the
extraction of equivalent circuit models, etc. are some
examples where auxiliary processing is needed for the
extraction of EM parameters of interest. The same
considerations apply to the parametric analysis of
measured data in the presence of noise. This paper
presents a versatile data-driven spectral model derived
from a state-space system representation of the computed
or measured EM fields, from which all the parameters of
interest can be extracted. Several examples will be
presented to demonstrate the usefulness of the proposed
approach for parametric extraction in EM problems.

Index Terms —Electromagnetic Scattering, Finite Difference
Time Domain, Finite Integration Time Domain, Microwave
Circuit, Microwave Resonator, Signal Extrapolation, Spectral
Estimation, State Space Method, System Identification,
Transient Analysis, Transmission Line

[. INTRODUCTION

With prolific algorithmic advances and significant
improvement of computational resources in recent years, full-
wave electromagnetic (EM) simulation techniques, such as the
method of moments (MoM) [1], the finite element method
(FEM) [2], the finite-difference time-domain (FDTD) method

[3] and the transmission line matrix method [4], are
increasingly used to solve complex EM problems involving
scattering, radar cross section (RCS), antenna design,
microwave circuit design, artificial EM materials, etc. These
rigorous techniques account for physical phenomena such as
surface-wave coupling and radiation, dispersion, frequency-
dependent metallization and dielectric losses, proximity
effects and near-field coupling. Although EM simulation
methods are computationally intensive in practice, large-scale
GPU and distributed computing enables commercially
available full-wave EM analysis software packages to be
applied to challenging problems such as scattering by
electrically large objects (e.g., computing the RCS of an
aircraft) and modeling the EMI between interconnects on a
printed circuit board containing dense RF and/or high-speed
digital circuits. The outputs of these software packages are
generally voltages, currents, scattering (S) parameters or some
derived EM field variable such as the RCS. In design studies
large datasets of these output parameters need to be processed,
for example, to remove the effects of transmission line
discontinuities on the S-parameters or to extract the modal
response of a particular wave species and isolate the scattering
centers causing undesirable RCS. Therefore, it is very
desirable to investigate independent signal models (in time
domain) and spectral models (in frequency domain), which
accurately represent the simulated or measured output fields.
One can then utilize this model for removing the effects of
discontinuities or parasitic scattering mechanisms so that the
desired EM performance can be characterized accurately.

Several researchers have extracted parameters of interest
from scattered fields or circuit response using signal
processing techniques such as Prony’s method [5], [6], pencil
of functions [7]-[11], autoregressive moving average
(ARMA) [12], [13], estimation of signal parameters via
rotational invariance techniques (ESPRIT) [14]-[16], multiple
signal classification (MUSIC) [17], and the state space
method (SSM) [18]-[21]. Applications include computation of
complex natural resonances and eigenmodes [22]-[28],
impulse response characterization of time-domain signatures
[29]-[34], broadband circuit parameter extraction [35], [36],
identification of radar target’s features [37]-[40], extraction of



Forum for Electromagnetic Research Methods and Application Technologies (FERMAT)

biomedical vital signs from UWB radar measurements [41]-
[43], and location of buried targets using ground penetrating
radar [44]. The basis behind such signal processing
application is that the EM field scattered by an object can be
adequately represented as a sum of damped sinusoids, whose
amplitude and phase are closely related to the physical
parameters of interest. For example, poles of the transfer
function for the exponential signal model locate discrete
scattering centers useful in object typing and feature
identification in radar target identification.

This paper presents a versatile data-driven spectral model
derived from a state-space system representation of the
computed or measured scattering parameters and EM fields,
from which all the parameters of interest can be extracted.
Parametric extraction from measured data is especially
challenging because of noise and random measurement errors.
The efficacy of spectral estimation methods to extract
parameters of damped sinusoids embedded in noise has been
studied by many researchers. For example, performance
analysis of MUSIC is treated in [45], [46], estimation of the
direction of arrival of radar returns using ESPRIT is presented
in [47], a performance study of matrix pencil method in the
presence of noise is described in [48], [49], and sensitivity
analysis of the state space method is treated in [50], [51]. SSM
[18]-[21] has been extended to ultra-wideband coherent
processing of range-Doppler data for radar target
identification and validated with static range measurements
[52]-[54]. A comparative analysis between state space and
matrix pencil methods shows similar performance with
comparable accuracy when implemented on harmonic
retrieval problems with noisy data [49], [55], [56].

The reader is referred to [40]-[43], [52]-[54] for the
application of SSM to feature identification using monostatic
RCS measured data on stationary targets as well as human
subjects. As we have shown in [40] using measured data on a
large conical target with and without a lossy dielectric coating,
the isolation of electromagnetic wave species of interest, such
as creeping waves, multiply diffracted waves and specular
scattering, yields a better understanding of the physics behind
wave propagation around curved dielectric or coated
structures, thereby improving the accuracy of feature
extraction or target identification. For example, it has been
shown that the coating enhances the creeping wave
contribution significantly in certain directions compared to the
metallic cone, suggesting its efficacy in absorbing EM waves
[40]. The biomedical UWB radar [41]-[43] uses narrow
pulses to probe the human body and detect tiny
cardiopulmonary movements by spectral analysis of the
backscattered EM field. With the help of super-resolution
spectral algorithms [52]-[54], UWB radar is capable of
increased accuracy for estimating vital signs such as heart and
respiration rates in adverse signal-to-noise conditions. A
major challenge for biomedical radar systems is detecting the
heartbeat of a subject with high accuracy, because of minute
thorax motion (less than 0.5 mm) caused by heartbeat. The
problem becomes compounded by EM clutter and noise in the
environment. We have shown that SSM processing of the
UWRB radar data on a stationary human subject consistently
produces accurate estimates of the vital signs for several

channels of UWB data without producing harmonics and
inter-modulation products that plague signal resolution in
widely used FFT spectrograms [41].

The state space method can be applied in either time domain
or frequency domain. In this paper, we focus on the frequency
domain problems. The reader is referred to [34] for the
application of SSM to time-domain EM problems. An
attractive feature of SSM is its ability to identify and associate
a small number of poles of the system transfer function with a
specific scattering mechanism or modal response, such as
scattering parameters at the transition between a coaxial
connector and a microstrip transmission line in measured data,
and isolated scattering by edges and seams from the composite
RCS of a large body. Thus, the desired field parameter can be
extracted or estimated from synthetic or measured data using
a linear system with relatively small model order. [llustrative
examples will be presented to demonstrate the usefulness of
the state space method for parametric extraction in EM
problems. We describe the problem formulation and the
modeling process in detail so that an uninitiated reader can
follow the steps to program and execute the algorithm and
generate results of interest.

In the first example, we consider a planar dielectric slab
illuminated by a plane wave at normal incidence and isolate
the reflection off the front face using range-classified poles
pertinent to the specular reflection. This process is akin to de-
embedding transmission lines at the ports to evaluate the
circuit behavior of an antenna or a discontinuity. In the second
example, appealing to the canonical problem of Mie scattering
by a sphere, creeping waves are extracted using SSM to model
the RCS response, and validated against high-frequency
asymptotic approximations. Next, random white Gaussian
noise is added to the Mie series solution, and Monte Carlo
simulation is performed to examine robustness of the SSM
estimates to noise. Numerical considerations such as dynamic
range, signal-to-noise ratio (SNR) and model order
determination are addressed in detail for both examples.

The paper is organized as follows. In Section II the state
space algorithm is reviewed in detail following [52], [53].
Section III presents basic numerical considerations on the
state space approach, such as estimating the SNR and the
model order. Section IV presents illustrative examples on
parametric extraction for EM problems, as discussed earlier.
Factors affecting accuracy and numerical efficiency of the
proposed technique are discussed. Finally, some concluding
remarks are provided in Section V.

II. STATE SPACE METHOD

In recent years, there has been a great deal of attention
devoted to model-based eigen-decomposition methods
derived from a state-space realization of the system
identification problem, which is defined as the determination
of the internal states of a linear time-invariant (LTI) system
given a set of inputs and outputs [18], [21], [52]-[62]. The idea
of using state-space methods to estimate frequencies and
amplitudes of damped sinusoids was first suggested in [18],
where Kung et al. developed a system identification approach
based on singular value decomposition (SVD) for the
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harmonic retrieval (or spectral estimation) problem. The
foundation of state-space signal modeling is based on
representation of a linear rational system, popular in linear
systems and control theory [63]-[65], in which the difference
equations for the discrete-time (or discrete-frequency) signal
are converted into state equations and the model parameters
are estimated in terms of the state matrices characterizing the
system. State-space parameterization enables reduction of
parameter sensitivity, as demonstrated by several examples
relevant to the sinusoid retrieval problem in the tutorial article
by Rao and Arun [21]. Unlike polynomial-based signal
processing methods such as Prony’s, MUSIC and maximum
likelihood estimation, in which the frequencies are obtained
by cumbersome root-search of the polynomials, state-space
methods simultaneously yield complex amplitudes (with
initial phases) and frequencies directly from three state
matrices. The frequencies are calculated from the eigenvalues
of the state transition matrix, and the amplitudes are derived
by modal eigen-decomposition of the state equations using
two auxiliary matrices, the control and observation matrices.

As shown in the sequel, because the decomposition of the
data into a sum of damped sinusoids gives rise to an LTI
system, the state matrices can be readily computed via a low-
rank truncation of the Hankel (or forward-prediction) matrix
representing the data. Thus, each entry of the Hankel matrix
can be expressed in terms of the impulse response derived
from the state space matrices. The SVD of the Hankel matrix
is a product of the observability and controllability matrices
which yield all the model parameters in the harmonic retrieval
using state dimensions corresponding to the number of
scatterers embedded in the data.

A. ARMA Signal Model

The scattered field output data sequence y(k) comprises N
uniformly spaced frequency samples (see (1) below), each
represented as a sum of M complex sinusoids (or scattering
centers) corrupted by measurement noise w(k), assumed to be
white Gaussian with zero mean. In deterministic data
modeling we assume that w(k)=0 and characterize the

impulse response, thus estimating the system parameters using
only the output. When the input is known and needs to be
considered (e.g., short pulses or modulated waveforms) the
system can be identified using both input w(k) and output y(k)
[34]. For completeness we retain w(k) in the formulation even
if we may not consider it in a given case. Thus, over a given
bandwidth, the signal measurements at N frequencies are
modeled as

M X
y(k):zaie(a,+.i2ﬂ,)fk +W(k); k=L1---,N, (1)
i=1
(k) = (k) + w(k).
The difference between the “true” signal (or truth), y(k), and
v(k),
measurement or modeling error, w(k). The model parameters

the state space model, is the random noise,
a, and «; represent the amplitude and its spectral rate of
decay (for negative «;) or growth (for positive «,),
respectively, for the i-th scattering center. Both positive and

negative ¢, are needed to model the peaks and dips in the

frequency response (for example at resonance). It is
emphasized that positive ¢, does not imply instability or

violation of any physical constraint such as the radiation
condition. The parameter 7, denotes time delay of the i-th

scatterer at the observation point and is related to range R, by
7,=2R,[c, where c is the speed of light. Equation (1) is set

up in terms of the monostatic RCS that an observer would
measure for a given target at range R,.  Therefore, 2R, is

simply the round-trip distance between the transmitter and the
target. If bistatic radar is used, then 2R, should be replaced

by R +R,
from the transmitter and the receiver, respectively. It follows
that 27z, f, =(®,/c)(2R)= B, (2R,) represents the phase of

the i-th sinusoid, with S, being the phase constant at the

where R and R denote the distance to the target

frequency f, . The frequency vector is specified in terms of

the carrier frequency f, as

fl;:fi+(k_1)4f‘5 kzla"'aN: (2)
where Af is the sampling frequency. The primary interest in

state space system identification is to estimate the parameters
a, a.and R, (or 7,), which are embedded in the data
sequence y(k). The latter two parameters are computed from
the eigenvalues of an open-loop state matrix, to be defined
shortly. Once these parameters are estimated, the amplitudes
a, can be readily derived from the state matrices using a

modal decomposition method based on least squares [53].
B. ARMA Transfer Function

The ARMA model in (1) is interpreted as an LTI system
with input given by the sequence w(k) and the output by the
data sequence y(k). The goal in system identification is to
compute the coefficients of the ARMA transfer function (TF)
characterizing the discrete-frequency signal model in (1).
Taking the z-transform of (1) after substituting f, from (2),

we obtain
M B
Y(z)=) ——+W(z) (3)
i=1 LT F;
4 4
B =ae"" 7N 2 g “)
p, =aq; + j2nr, %)

In (3) - (5) B, denote the complex amplitudes, &, is the initial
(static) phase, and p, are the poles in the complex z-plane.

The summation in (3) results in a TF comprising rational
polynomials in the numerator and denominator:

M-I
.+ ez’
Y(z) _ ’ ; " A N2

I(2) =

W(z) o . D(z) ©)
I—Zd,z“
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The TF T(z)has M poles and M —1 zeros, located at the
roots of D(z) and N(z),respectively. The TF in (6) represents

a special case of a more general ARMA TF given by

Q .
TN +ch.z_’
T(Z) — i=1 é N(Z)
N  D(z)
I—Z:d.z_7
i=1

i

(N

which has P poles and Q zeros (P and Q can assume arbitrary
integer values). The special case Q = P—1 listed in (6) is also
known as “strictly proper” TF and the Prony’s model belongs
to this category. Another important special case is the purely
Auto Regressive (AR) TF with O =0.

The input-output relationship for the general ARMA model
with the TF in (7) is characterized by the difference equation

P 0
y(k)=Zd,y(k—i)JrZC,W(k—j)+CoW(k) (3)

Eq. (8) is valid for the TF in (6) as well with P =M and
Q=(M —1). From linear systems and control theory [63],

[64] one can show that the difference equation in (8) may be
written alternatively in terms of the state-space description
characterized by the difference equations

x(k+1) = Ax(k)+ Bw(k) )
W(k) = Cx(k) +w(k), (10)
where x(k)eC"' is the state, AeC"is the state

transition matrix, BeC"" and CeC"™are constant
matrices known as control matrix and observation matrix,
respectively [64]. Our goal is to identify the matrices 4, B and
C given the data sequence y(k) and the input w(k). The transfer
function, 7(z), is obtained by taking the z-transform of (9) and
(10) and evaluating the ratio Y(z)/W(z):

T(z)=C(zI — A)" B+1. (11)

It follows from (11) that the poles of the model (i.e., the roots
of D(z) in (7)) are the eigenvalues of the open-loop matrix A4
and the zeros (i.e., the roots of N(z) in (7)) are the eigenvalues
of the matrix (4—BC)[52], [53].

C. State Space System Identification

The transfer function in (7) can be written equivalently in
terms of its impulse response sequence as

T(z)=h(0)+h()z" +---+h(n)z " +--- 12)

which is aptly referred to as the infinite impulse response (IIR)
transfer function. The expansion of the inverse matrix in (11)
into an infinite series yields

(Z]—A)_1 =L v Az A (13)
By inserting (13) into (11) we obtain
T(Z):1+CBZ_1 +CABz> +CA*Bz +--- (14)

Equating coefficients of like-powers of z in (12) and (14) and
realizing that h(k) = y(k) for the impulse input, we obtain

»0)=1

y(1)=CB

(2) : CAB 15)
y(k)=CA*'B

Therefore, the relationship between the impulse response of
the model and the state-space parameters for any positive
value of & is defined by

y(k)=CA""'B, k > 0. (16)

Eq. (16) indicates that a Hankel (or forward-prediction)

matrix, H, formed from the IIR sequence of a system as
v y(2) y3)
2 3 4
_[y@ yB) ¥4 (17)
y3) y@ »0O)

can be decomposed into a product of two matrices given by

C
Cc4 5 N
H=| o [B 4B £4°B --]2ar, (18)
where € and I are known as observability and

controllability matrices, respectively [65]. It is important to
note that despite the infinite dimensions of H in (17), in
practice the impulse response is always finite. Thus, for a
given set of measurements the rank of the Hankel matrix H,
and by inference the rank of Q@ and I', will always be finite.
As described later in this Section, Q and I' , consequently H,
can be truncated to low-rank matrices with rank r <M,

where M is the number of complex sinusoids in the model (see
(1)). In summary, the Hankel matrix H may be interpreted as
an operator constructed from a set of measurements y(k) that
maps the past input vector w’ to the future output y*. Causality
of SSM is explicit in (8) - (10), which emphasize that the
current output is dependent on the past output and the current
as well as the past input signals. Next, we present a method
to derive the state-space matrices from the Hankel matrix
constructed using a finite set of output data samples.

The first step in computing the triplet (4, B, C) is to form
the Hankel matrix using the available data samples
y(k), k=1,2,---N.

y(@) »2) y(L)
- y(:2) y(:3) y(L:+ 1) (19)
WN=L+1) y(N-L+2) y(N)

where the parameter L denotes length of the correlation
window, heuristically chosen to be L=[N/2], and the
brackets denote the smallest integer less than or equal to the
inserted quantity. Note that the Hankel matrix in (19) is a
truncated version of the IIR in (17). Subspace decomposition



Forum for Electromagnetic Research Methods and Application Technologies (FERMAT)

methods exploit the eigenstructure of Hankel matrices to
compute the state matrices of the LTI system and estimate the
signal models [18], [21], [25], [26], [52]-[56], [60]-[62].
Accordingly, we partition the Hankel matrix into signal and
noise subspaces using the singular value decomposition of H.

Organizing the SVD in terms of the singular values {O',.} in

descending order of magnitude, the Hankel matrix may be

written as
Z . 0 V* *
H:[Us Un] ’ A =UZV (20)
0 En Vn*

where the subscripts s and n denote the signal and noise
subspaces, respectively, and the asterisk refers to matrix
conjugate transpose. The matrices U and U, are the signal

and noise components, respectively, of the left-unitary matrix
[US Un]. Likewise, V,and V, denote the signal and noise
of the
[K Vn] Furthermore, £ and X are diagonal matrices

components, respectively, right-unitary matrix

comprising the signal and noise singular values, respectively.
It is understood that the signal components in the SVD are
entirely characterized by the dominant singular values X .
The classification between signal and noise subspaces is
achieved by parsing the singular value spectrum in descending
order of magnitude and removing the noise singular values X,
[18], [50]-[53]. To increase the accuracy of the state-space
matrices, the Hankel matrix A may then be truncated by
suppressing the noise singular values and their associated
unitary matrix components. This results in a reduced-rank
approximation to the Hankel matrix in (20), obtained by
retaining only the dominant singular values (cf. [51]), i.e.,

H=UZV'. (21)

Let the computed singular values in X be arranged in
descending order of magnitude

o, >0,> - (22)

where r is chosen subject to the threshold [53] o, /o, #1077,

and p is the number of significant decimal digits in the truth

>0, >0

data. For example, if the data is accurate to three significant
digits, then the singular values with upper bound » for which
the ratio is less than 0.001 are considered as noise singular
values and excluded from the model. The largest index r of the
singular values in the signal subspace is the rank of the
Hankel matrix. It can be shown that the largest retained
singular value minimizes the error between the Hankel

matrices H and H in the spectral norm sense [49], i.c.,

o, ~|H - H“ , (23)

where the subscript s denotes the spectral or L; norm [64]. As
demonstrated in Section III, magnitude of the dominant
singular values in the signal subspace may be conveniently
used to estimate the “optimal” model order M in (1). Next, we
address how one can compute the state matrices from the
SVD.

Akin to (18) H is obtained in factored form as

H=UXV =Qr (24)
By using the balanced coordinate transformation method
proposed in [18], one can compute the [finite-rank

observability matrix Q and controllability matrix T from
the SVD in (24). These matrices are given by

Q=US"? and F=3"1".

CM><M

(25)

Then, the open-loop matrix A4 e can be derived from

either Q or T' as shown in the Appendix. If the derivation of
A is based on the observability matrix Q, then [40]

A=(,.0.,) @0, (26)

The matrices Q ,, and Q_,, in (26) are obtained by deleting

the first and last rows, respectively, of Q. Alternatively, in
terms of the controllability matrix, 4 is given by [40]

A = f‘—clf‘ic/ (f—clfic/ )71

27)
where the matrices T'_, and T _,, are obtained by deleting the

first and last rows, respectively, of T". The reader is referred
to the Appendix for the least-squares computation of B and C,
also using either Q or I". As noted earlier, the matrices B and
C contribute to zeros of the transfer function. In the AR SSM
that we have employed in [39], these two matrices are not
used, because the system is entirely characterized by the poles
determined from 4.

D. Modal Decomposition

Once the state matrices (4,B,C) are known, the model
parameters in (1) may be computed using a modal (or eigen-)
decomposition method [52], [53]. If the complex eigenvalues
of A4 are assumed to be distinct, one has

A} ={A, A, Ay }- (28)

The magnitude of the eigenvalues {/1,.} determines amplitude
decay/growth rate (with respect to frequency) of the system
output, and their phase provides the time delay 7, or the range
R in (1). Asnoted in (11), the eigenvalues of 4 represent the
poles of the transfer function, 7(z). The eigenvalues {/11.} and
the eigenvectors [l//i] of the state matrix 4 satisfy

Ay, =Ay,; i=1---M 29)
Now let us form a modal matrix ‘¥, from these eigenvectors
by stacking them row-wise:

Y= [Wl ¥, l//M] (30)
It follows from (28)-(30) that
AY =YA, (€20
A =diag{2 2, Ay }- (32)
Therefore, we may calculate A from (31) as
A=V"4¥ (33)

The entries on its main diagonal are exactly the eigenvalues
of the state tranmsition matrix A. Therefore, the modal
decomposition approach provides valid information to
characterize the target, and it can be used to identify point
scatterers embedded in the data set. The IIR approximation,
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P(k), of the data sequence y(k) can be computed in terms of
the state matrices using (16) as

P(k)=CA"'B, k=1,2,---N. 34)

After substituting for 4 from (31) and realizing that
A" =A™, we obtain
P(k)=C¥YA""¥P'B. (35)

The amplitudes of the scatterers in (1) may be computed from
(34). Let

v =[v, v, v ] (36)
where the superscript 7' denotes matrix transpose. After
inserting (30), (32) and (36) into (34), we obtain

M
PR =D(CuHEBAT k=1 N (37)
i=l1

Using (1), we deduce that the magnitude and phase of the

eigenvalues (poles) are related to the model parameters «,,

7,, and R,, respectively, by
log| 4. ]

o loeldl 4

' A "2mNf

dR -2

= ,i=1,-
47nf

M

(38)
In (38), ¢ refers to phase of the eigenvalue A. The
amplitudes g, defined in (1) are then obtained from (37) using

these eigenvalues, the corresponding eigenvectors, and the
state matrices B and C:
Cy.)(v.B
()Y
The frequency dependence of the amplitudes and their
decay/growth rate is emphasized in (38) and (39).

(39

Next, we discuss the physical interpretation of the state
space parameters. The correspondence between the scattered
response and its state space representation in terms of complex
sinusoids becomes apparent when one compares (1) and (37).
The poles 4 of the transfer function yield the localized

scattering centers on the scattering object. As derived in the
Appendix, the matrices B and C follow from least squares
solution applied to linear systems represented by the
observability and controllability matrix, respectively (see (63)
and (67)). Therefore, the matrices B and C are directly related
to the observability and controllability of the linear system in

(34). The observability matrix Q affects the shape of the
natural response of the scattered field (directly proportional to
the natural modes or eigenvectors of the state transition matrix
A) within a given frequency band. The controllability matrix

I limits the effect of an input such as an impulse on the
scattering response. In other words, the controllability matrix
determines how much of the excitation is coupled to the
natural modes of a particular scattering center within the
defined bandwidth.

III. NUMERICAL CONSIDERATIONS

A. Estimation of the Model Order

In any spectral estimation problem, selection of model order
of the underlying system is a critical issue. The difference
between the desired and modeled signal, as defined in (1), is a
combination of model mismatch error, measurement error,
and noise. If this error is Gaussian distributed, then the
minimization of the error criterion in (23) represents the
maximum likelihood estimate (MLE) for the ARMA problem
[18], [66]. In case of MLE, the Akaike information criterion
(AIC) or minimum description length (MDL) criterion are
often used for model order determination [67]-[69]. An
estimator that yields the true number of signals with
probability one as the sample size increases to infinity is said
to be “consistent.” It has been shown in [68] that MDL is a
consistent estimator of order, whereas AIC is inconsistent and
often overestimates the model order.

SSM has been used with simulated as well as measured
data. In deterministic data modeling such as simulated data
where the SNR is quite high, we employ the singular value
matrix X to estimate model order in the SSM. The large
singular values in X correspond to strong signal components,
while the smaller values are generally attributed to noise. For
low noise levels, there is a sharp transition between the large
and small singular values. This transition point can be used as
an estimate of the model order. At higher noise levels,
especially for measured data, the transition from large to small
singular values may not be well-defined, making model order
estimation more difficult. In this case, probabilistic methods
such as AIC and MDL criteria have been used for model order
estimation (cf. [33]). No general criterion exists to determine
which of these methods gives the “optimal” model order, and
none of them provide necessary and sufficient conditions to
guarantee that all the required signals are included in the
model. It is expedient to consider the underlying physics of
the scattering mechanism to guide the determination of the
number of scatterers using a combination of these methods,
and to examine the goodness of fit for each model order by
computing the mean square error in the model [40]. For
convenience, the equations to compute AIC and MDL from
the singular values, o, of the Hankel matrix approximation,

H, are summarized below [68].

ﬁ (M-r)
o

i=r+l
1 M

M—r.z %

i=r+l

AIC(r)=-2(M —r)NIn +2r(2M —r)

(40)

M
MDL(r) = (M —r)N In| <=

M

M—r;zai

=r+l

+%r(2M—r)lnN

(41)

In the above, M is the maximum model order in (1) and N
is the number of data samples. For a given number » of
signals, the term in the parentheses simply denotes the ratio of

6
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geometric mean to arithmetic mean of the smallest M —r
singular values, and it is a measure of the error between the
truth and the model. The number of signals, i.e., the model
order, is determined as the value of re{l,2,---(M —1)} for

which either the AIC or the MDL is minimized [68].

100 Singular Value Spectrum vs. Model Order
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Fig. 1. Singular value spectrum vs. model order for measured RCS
on a cone. Circles denote MDL and diamonds denote AIC [40].

As an example, Fig. 1 shows the singular value spectrum
(amplitudes in descending order of magnitude) plotted against
the model order for experimental RCS data on a right circular
conical stationary metallic target with and without a lossy
dielectric coating [40]. It is seen that transition from strong
signal components to small singular values is not well-defined
because of measurement noise. AIC yields an order of 15 and
13 for bare (metallic) and dielectric-coated cones, while MDL
yields model orders of 4 and 7, respectively. Due to
measurement noise, AIC usually gives a larger estimate than
MDL, and modelers usually choose an order no smaller than
the AIC prediction. Therefore, an order of 15 has been chosen
in [40] to extract the wave features of interest for both metallic
and coated cones.

B. Estimation of Signal-to-Noise Ratio

The SNR of the radar system is influenced by noise
contributed by several sub-systems, such as oscillator phase
noise, mixer //f noise, thermal noise, antenna leakage and
mixer leakage. It is cumbersome and often inaccurate to
estimate these random noise levels in the radar sub-systems
using circuit models [70]. SSM considers this noise through
decomposition of the Hankel matrix into signal and noise
subspaces using the singular value decomposition.

The threshold for such decomposition is based on the
dynamic range and SNR, which can be estimated from power
spectrum of the original measured or simulated data, as
discussed next. First, we consider measured data on the chest
wall displacement of a human subject to extract the heart and
respiration rates [41]. UWB radar with a center frequency of
2.4 GHz, bandwidth of 2 GHz and pulse repetition frequency
(PRF) of 75 Hz is used to collect the data. The complex signal
I+ jO of the radar return from a human subject located 1 m

from the radar is plotted in Fig. 2 [41]. Random fluctuations
caused by measurement noise are evident. The complex
signal in Fig. 2 is transformed with FFT using a Hamming
window to suppress the sidelobes. This does not affect the

peak signal but clearly defines the noise floor relative to the
peak. Therefore, the dynamic range and SNR can be estimated
from the compressed (or transformed) signal plotted as a
function of Doppler frequency proportional to the chest wall
displacement. Fig. 3 shows that the SNR for Channel 3 data is
moderately high (around 24 dB), as one may expect from
indoor laboratory RCS measurements, which are not subject
to multipath and clutter encountered by fielded radar systems.
Next, we consider SNR evaluation for simulated data.
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Fig. 2. Raw time sequences of I and Q channels [41].
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Fig. 3. SNR estimate from UWB radar data on a human subject [41].

In simulated data, the difference between the desired and
the modeled signal, as defined in (1), is a combination of
model mismatch error and any noise intentionally added to the
signal to determine statistical effects of random variation in
parameters (e.g., Monte Carlo trials). In the absence of any
added noise, the model mismatch error can be treated as noise.
The SNR can be defined as the ratio of variance of the signal
data sequence to the variance of the noise sequence,

V{ph]
SNR =10log| —————— |, k=1,2,---,N (42
> (V{y(k)—ﬁ(k)}J )
where V stands for variance defined by
Vify= Z|f(k) A’ (43)

and g is the mean of f(k), given by



Forum for Electromagnetic Research Methods and Application Technologies (FERMAT)

u =%Z;f(k)~ (44)

In a noise-free situation, if the SSM estimates defined by
(34) closely match the data samples, the SNR defines the
dynamic range of the model. Thus, the number of scatterers or
signals giving rise to the estimates corresponds exactly to the
number of sinusoids embedded in the data. In a noisy
situation, it is important to use caution so that the estimates
are not direct replicas of the noisy samples. Therefore, an
“optimal” model order should provide appropriate SNR or
dynamic range for a sinusoid being modelled.

IV. RESULTS AND DISCUSSION

In this section, two examples based on simulated data are
presented to illustrate the state space method. In the first
example, we consider a planar dielectric slab illuminated by a
plane wave at normal incidence and isolate the reflection off
the front face using range-classified poles pertinent to the
specular reflection. The subsequent radar-return signals
enable classification of multiple internal reflections also. In
the second example, we consider Mie scattering from a sphere
in the absence of noise, extract the creeping wave that
circumnavigates the shadow zone and returns to the radar, and
examine accuracy of the SSM estimates by comparison with
an analytically derived expression of the creeping wave. Next,
random white Gaussian noise is added to the Mie series
solution, and Monte Carlo simulation is performed to examine
robustness of the estimates to noise. Numerical
considerations such as SNR, singular value spectrum and
order determination are addressed in detail for both of these
examples. The reader is referred to [40]-[43] for application
of SSM to feature identification using monostatic RCS
measured data on stationary targets as well as human subjects.

A. Reflection by a Dielectric Slab

Plane wave reflection from a 15-mm thick lossy dielectric
slab with dielectric constant &, =(5,—0.01) is considered, and

it is shown that the response of the front face of the slab as
well as multiple internal reflections can all be isolated from
the composite response using SSM. Each of these
contributions is specifically mapped to a range-gated pole.
The slab of thickness d is located in free space. Its Fresnel
reflection coefficient is calculated as

(m —m; ) tanh (5,d)
2n,1, +(7712 +1; )tanh(j/ld) ’

n=Jk, k=ke., ky=o\us, (46)

7 :i]o/\/g, n, =1207.
Without loss of generality, normal incidence is considered for
illustration. The complex propagation constant and intrinsic
impedance in the lossy dielectric are given by y, and 7,

Ww)=T=

(45)

respectively. The phase constant and the intrinsic impedance
of free space are denoted as k, and 7,, respectively, while @
is the angular frequency. The reflection coefficient is
calculated at normal incidence over 2-20 GHz bandwidth and
Fourier transformed, using a Hamming window to suppress
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the sidelobes, to obtain the composite response shown in Fig.
4. The transform employs distance to the scatterer (or range)
instead of time, an operation known as pulse compression.
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Fig. 4. Range response of the 15-mm thick slab reflection coefficient.

Because the phase reference is at the front face, the pulse
with peak at zero range is the reflection off the slab-front, the
second pulse is the first reflection off the back face arriving
coherently at the “receiver,” the third pulse is the second re-
reflection off the back, and so on, as illustrated geometrically
in Fig. 5 using transmission line analogy [71].
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Fig. 5. Reflection diagram in analogy with transmission line circuit

[71].

Next, a 10" order state-space model (see (1)) is estimated
from the simulated data. The model parameters are listed in
Table 1, where the poles and the signal amplitudes are
classified in terms of scatterers of interest highlighted in the
last column. The rows are sorted in descending order of the
peak amplitude. All the poles lie within or on the unit circle,
validating the stability of the system.

Table 1. SSM parameters for model order M = 10.

Index Pole Location Complex Amplitude Abs(Amp) Range(m) Notes
1 1.0000-j0.0000 -0.3820+j0.0004  0.381967 0.0000 Front
2 1.0000-j0.0070 -0.3077-j0.1057 0.325323 0.0150 Refl. 1
3 0.9999-j0.0140  0.0374+j0.0290 0.047331 0.0300 Refl. 2
4  0.9998-j0.0211  -0.0038-j0.0058 0.006886 0.0450 Refl. 3
5 0.9996-j0.0281 0.0002 +j0.0010 0.001002 0.0600 Refl. 4
6  0.9993-j0.0351 0.0000-j0.0001 0.000146 0.0750 Refl. 5
8  0.9991-j0.0421 0.0000 +j0.0000 0.000021 0.0900
9  0.9987-j0.0492  0.0000-j0.0000 0.000003 0.1050
10 0.9984-j0.0562 0.0000 +j0.0000 0.000000 0.1200
7 0.9979-j0.0632  0.0000-j0.0000 0.000000 0.1350

It is interesting that the signal peaks are separated in SSM-
computed range (see (38)) by exactly 15 mm, the thickness of
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the slab. The dominant pole, located at (1, 0) with amplitude
0f 0.382 and phase 7, is found to have zero range. This signal

corresponds to the isolated front face reflection. The
subsequent poles, consecutively spaced at 15 mm, represent
the isolated secondary reflections off the back face, as
illustrated in Fig. 4. The first five signals of interest in Table
1 appear to have the maximum spectral content, as the sixth
term is three orders of magnitude smaller than the dominant
signal. Using the coherent summation of only these first five
terms in the state space model (1), we have computed the
frequency response of the composite signal. Fig. 6 compares
the “truth” with the state space model in both magnitude and
phase, and the two sets of curves overlap each other,
signifying excellent model fidelity.

As alluded, one can isolate the front face response by using
only the dominant pole at zero range. The reflection
coefficient of this isolated pulse is the same as that of the half-
space problem because the delayed reflections off the back
face are not included. Therefore, using the constant amplitude
of ', =-0.382+ 0.004 from Table 1, the slab’s dielectric

constant can be determined as

0 Extracted Magnitude Response

=10 -
o
2
o 20~
]
2
.E -30 -
o
©
= 40-
——SSM Estimate
50 - | | —Frtyesnel Data | |
0 5 10 15 20
Frequency (GHz)
(a)
Extracted Phase Response
200 | | T
ool \ \ \ N
=)
(]
2 ol —SSM Estimate
§ —Fresnel Data
=
o
-100 | \ y\ V\ \
200 ‘ ‘ .
0 5 10 15 20
Frequency (GHz)
(b)

Fig. 6. Corroboration between SSM model and the truth (eq. (45))
using only the first five signals in Table 1. (a) Magnitude, (b) Phase.
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Eq. (47) yields ¢, =5—0.01 exactly, verifying the accuracy

of the signal extraction. It is imperative that isolation of
individual signals of interest requires adequate bandwidth to
provide the spectral resolution needed to separate the peaks.
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Fig. 7. Range response of the 5-mm thick slab reflection coefficient.

0.1

When the thickness of the slab is reduced to 5 mm, one
obtains the compressed range response shown in Fig. 7, which
clearly shows the impending merging of the first two peaks.
Using a bandwidth of 18 GHz, these two peaks are very close
in amplitude, and may not be adequately resolved in range.
But when the bandwidth is increased to 28 GHz, the peaks can
be isolated. Furthermore, in the latter case, the markers also
indicate secondary fluctuations appearing at approximately 10
and 15 mm, corresponding to re-reflections off the back face.
However, in measured data, such small fluctuations of the
main lobe may be masked by noise, and a larger bandwidth
may not necessarily improve the SNR.

Fig. 8 plots the model error magnitude of the frequency-
domain response for SSM with order M = 5 (the first five
terms in Table 1) and d = 15 mm. The mean error is -77.3 dB,
proving that all the significant signals have been modeled. A
similar agreement between raw data and SSM is observed in
the phase too, with mean error of 0.2°.

75 Frequency Domain Error, Abs(Raw Data - SSM), d =15 mm, M =5
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Fig. 8. Model error in magnitude of the SSM frequency response.

The model error for M = 10 and M = 15 did not decrease
beyond the error depicted in Fig. 8 for M = 5. A performance
measure for evaluation of the model error is the SNR in (42).
Table 2 lists the SNR for few model orders ranging from 5 to
15. It is evident that SSM with M = 10 gives the highest SNR
and any further increase in the order does not impact the error.

Table 2. SNR as a function of model order for the slab problem.
Model Order 5 10 15
SNR (dB) 67.4 101.1 101.1

A deeper understanding of the sources of modeling error in
SSM can be obtained by examining the error for various
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model orders relative to the compressed SSM signal. Along
with the singular value spectrum, to be discussed shortly, this
will help us in evaluating impact of the signals discarded in
the model as “noise.” Fig. 9 displays the error responses for
model orders M =5 and M = 10, compressed using a 4,096-
point FFT on sequences of length 3,601, with a Hamming
window to suppress the noise sidelobes. For comparison, the
compressed SSM signal estimate, identical for the two model
orders, is also shown. The range coordinate for each peak (in
mm) is annotated in the graph. We observe that the SSM
signal, y(k), models the five dominant reflections signified by

the first five poles (see Table 1), and the remaining signals are
embedded in noise. Because these discarded signals are there
in the truth data (45), it is not surprising that the range spectra
of the error signal, y(k)—P(k), depict these discarded noise

peaks precisely. The number of such noise peaks embedded
in the error sequence depends on the model order. For
example, with M = 5, we calculate a noise floor of -110 dB
(the mean square of the compressed error pulse) and identify
the three noise peaks at 75, 90 and 105 mm. With M =10, we
can identify the noise peaks at 105, 120 and 135 mm.

Compressed Range Response Comparison, d = 15 mm
T 0 = - il
s —SSM Signal
——Error M=5
—Error M=10 |
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én
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g =

200 : : |
0.2 0.1 0 0.1 0.2
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Fig. 9. Comparison of the compressed signal and noise (error)
responses for two model orders. The numbers above each peak
indicate the range in mm.

The noise spectrum did not change with any further increase
in model order beyond 10. Thus, the last noise peak one can
identify is at 135 mm. As the highest noise peak (at 75 mm) is
90 dB down from the main reflection at zero range, none of
these discarded noise peaks has any influence on the SNR.

Singular Value Spectrum for d = 15 mm Slab
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Fig. 10. Singular value spectrum to determine the model order.

Lastly, we estimate the model order by examining the
singular value spectrum plotted in Fig. 10 as a function of its

index, . The SVs are normalized to the largest value (r =1).

The model order can be determined subject to the threshold
[56] o,./o, =107, where p is the number of significant

decimal places in the truth data. Thus, if the data is accurate
to 7 places, the SV spectrum predicts a model order of » =10.
In practice, the data may be accurate to third or fourth decimal
place, but not till the seventh as the simulated reflection
coefficient (45) for this simple illustrative problem. For three-
digit accuracy, Table 1 indicates that a model order of 10
yields 5 signal poles and 5 noise poles (weak signals
embedded in noise). Indeed, the error analysis in Figs. 8 and
9 validates this observation.

B. Scattering by a Sphere

Let us consider the extraction of creeping waves from the
canonical problem of scattering by a perfect electrically
conducting (PEC) sphere using the SSM. The scattered field
for plane wave incidence is computed analytically using the
Mie series [72], first in the absence of noise, and then with the
influence of additive Gaussian noise. The model order is
estimated in each case by examining the singular value
spectrum, and the accuracy of the extracted creeping wave is
established by comparison with an analytically derived
asymptotic expression of the creeping wave [73].

B.1. Baseline without Noise

The monostatic RCS is calculated for a PEC sphere of
radius a =17.7 cm using the Mie series, and is plotted against
frequency over a range of 2 to 20 GHz in Fig. 11. As the radius
becomes much larger than the wavelength, the normalized
RCS asymptotically approaches za’. The contribution to
back-scattered field comes from a specularly reflected ray
emanating from point 4, and a creeping wave, which attaches
to the sphere tangentially at point B, navigates half the
circumference, and detaches at the symmetrical tangential
location C, as shown in the inset in Fig. 11. The specular
contribution is governed by geometrical optics (GO)
approximation and can be analytically calculated [74]. The
creeping wave diffracted field can be approximated by
asymptotic evaluation of the Fock integrals [73], [74].
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Fig. 11. Normalized RCS of a PEC sphere, computed using Mie
series.
In order to isolate the scattering centers pertinent to the
specular and the creeping wave, we first compute the range

10



Forum for Electromagnetic Research Methods and Application Technologies (FERMAT)

profile of the back-scattered field, displayed in Fig. 12, by
FFT of the Mie series frequency response using a Hamming
window to suppress the sidelobes. The phase reference is
chosen such that the point of specular reflection is at zero
range. The second peak which corresponds to the creeping
wave is at 0.454 m range, in agreement with the range
predicted from ray path geometry (see the inset of Fig. 11) as
0.455m, i.e., R=(z/2+a.
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RCS (dBsm)
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Fig. 12. Range profile of the back-scattered field.

Next, SSM is applied to extract range-isolated poles
specific to the creeping wave, and their cumulative frequency
response is calculated. A 10" order state space model is
computed from the Mie series frequency response shown in
Fig. 11. We have observed excellent corroboration between
the estimated SSM model and the truth data in Fig. 11 over
the entire 18 GHz band. For brevity, we focus only on
representation of the creeping wave using the corresponding
range-isolated poles from the SSM. As described in Section
II, an advantage of using range processing with the spectral
estimation method is the direct relation between range and
pole phase (see (38)). Thus, one may isolate a given scattering
mode by adding contributions from only the poles associated
with the range window of that mode. Of the 10 poles used in
the SSM to represent the entire signal in Fig. 11, only two
poles are identified with model-computed range of 0.454 m,
relevant to the creeping wave peak. By coherently summing
the contributions of only these two poles, we obtain the
extracted frequency response shown in Fig. 13.

-10 T T T

RCS (dBsm)
3

0 5 10 15 20
Frequency (GHz)

Fig. 13. Comparison of SSM-extracted creeping wave with the

analytical solution from [73].

In order to demonstrate baseline validation with no noise
present in the data, we also plot in Fig. 13 an analytical
solution for the spherical creeping wave from [73], which
essentially overlaps with the SSM-estimated data. The signal

amplitudes for the two creeping wave poles are observed to be
around -36 dB, signifying high accuracy in the model even for
small signals. Later, we will evaluate model robustness using
Monte Carlo analysis with Gaussian noise added to the Mie
series. The absolute model prediction error for the creeping
wave estimation is plotted in Fig. 14. A similar agreement
with the analytical solution is also observed for the specular
peak extracted from the Mie series in Fig. 11.
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Fig. 14. Model prediction error for the extracted creeping wave
relative to the analytical solution from [73].

B.2. Monte Carlo Analysis

The SSM extraction of signals of interest from Mie series
in the presence of noise is considered next. Monte Carlo (MC)
analysis is performed by adding random noise of a given SNR
to the Mie series solution for the PEC sphere and evaluating
the accuracy of the SSM-extracted components, namely, the
creeping wave and the specular. The measurement noise w(k)
(see (1)) is assumed to be complex white Gaussian with

variance o, defined by peak signal-to-noise ratio

SNR =20 log(a‘" J (48)

(o}

where o, denotes the signal variance. For a given SNR, 1000

independent trials are executed on the Mie series solution, and
the state space method is applied to process each noise-
corrupted data sequence and extract the wave constituents of
interest. In order to assess the quality of the data, the noise-
corrupted Mie series (truth) data is plotted in Fig. 15 against
SSM model (with order M = 10) of the total response for the
mean of 1000 MC trials with SNR =20 dB. It is observed that
coherent averaging of the MC trials reduces the influence of
noise considerably. As the electrical size of the sphere

increases, the asymptotic limit of SSM correctly reaches 7za’.
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Fig. 15. Average of the SSM-extracted Mie series composite signal
over 1000 Monte Carlo trials.
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Extracted Specular Response. Mean of 1000 MC Trials.
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Fig. 16. Average of the SSM-extracted specular wave signal over
1000 Monte Carlo trials.

Next, we consider the extraction of the specular wave. Fig.
16 depicts the frequency response corresponding to SSM
processing of the average of 1000 MC trials, with SNR
ranging from 5 dB to 20 dB. Only two poles are used in the
SSM for the extraction. The response for each SNR is
observed to track the analytical (noise-free) solution quite
well. The worst-case error relative to the reference solution is
about 0.05 dB and occurs for SNR = 5 dB. More importantly,
because of the relatively large amplitude of the specular
(about -10 dB), we have observed good correlation between
corresponding pole locations for each trial. For brevity, the
pole plots are not included.

20

We address Monte Carlo analysis of the creeping wave
next. As seen in Fig. 13, the noise-free creeping wave signal
has an amplitude of -20 to -70 dB, and therefore, adding noise
before the creeping wave extraction would considerably stress
the state space algorithm. Fig. 17 displays the performance of
SSM in extracting the creeping wave for various SNRs,
relative to the reference analytical solution from [73].
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Fig. 17. Comparison of SSM-extracted creeping wave for the
average of 1000 MC trials with the analytical solution from [73].

The extracted signal is in reasonable agreement with the
analytical solution for SNR>10dB. The SSM estimate
deviates significantly from the reference solution at
frequencies greater than 10 GHz for SNR = 5 dB. For SNRs
between 5 and 15 dB, the error increases with frequency for
f >16 GHz, but the RCS response is around -70 to -65 dB,

which is approaching the noise floor. It has been observed that
the pole drift from trial to trial becomes significant for SNR =
5 dB, and in fact, for signals smaller than -60 dB, it becomes

difficult to discriminate noise poles from the signal poles.
Therefore, for weak signals such as creeping waves, caution
should be exercised in extracting the signal under low SNR
conditions. Nevertheless, the worst-case performance of SSM
under the stressing conditions depicted in Fig. 17 is gratifying,
given that the frequency response of the creeping wave signal
for each SNR, extracted from the average of 1000 MC trials
of the Mie series, follows the overall analytical trend. One can
improve the noise performance by employing two-
dimensional data, e.g., aspect- and frequency-dependent RCS,
which improves the SNR by coherent integration of frequency
samples over many pulses [61], [62]. Our extensive work on
state-space methods to process biomedical radar data [41]-
[43], [75], [76] suggests that the SNR of vital sign detection
can be substantially improved, and additional features such as
subject localization, motion compensation, gait analysis, etc.,
can be estimated, using block-processing of one-dimensional
data (in the frequency domain) to attain considerably
improved accuracy over FFT-based methods.
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Fig. 18. Model prediction error for the extracted creeping wave
relative to the analytical solution from [73] after 1000 MC trials.
The absolute model prediction error for the creeping wave
estimation from the average of 1000 MC trials on the Mie
series is plotted in Fig. 18 in terms of the SNR. It is evident
that the worst-case error for SNR = 5 dB is between two to
four orders of magnitude larger than the model error for the
noise-free case shown in Fig. 14. For SNR >10 dB, the error

is only slightly larger than that in Fig. 14.
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Fig. 19. Singular value spectrum vs. model order for noisy data with
SNR = 5. MDL yields a model order of 7 and AIC, an order of 20.

Lastly, we investigate the model order by computing the
singular value spectrum as well as AIC and MDL estimates.
12
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It is seen in Fig. 19 that the transition from strong signal
components to small singular values is not well-defined
because of noise. AIC yields model order of 20 while MDL
yields 7. Due to measurement noise, AIC usually gives a
larger estimate than MDL, and modelers usually choose an
order no smaller than the AIC prediction. Therefore, an order
of 20 has been chosen to extract the wave features of interest
for the sphere. Compared to estimates in the dielectric slab
case, which have a very high SNR (see Table 2), the accuracy
in the SSM estimate for the MC trials is much lower, of the
order 0.001.

V. CONCLUSIONS

A spectral model based on state-space ARMA
representation has been presented to isolate and extract modal
EM responses, such as creeping waves and multiply reflected
or diffracted waves, which are of interest in radar target
identification and feature extraction. The eigenvalues of the
open-loop system matrix, i.e., poles of the ARMA transfer
function, provide the range and the frequency-dependent
amplitude decay/growth rate of the field data. The amplitudes
in the complex exponential model are obtained by least
squares modal decomposition involving the state matrices.
Range classification of the poles allows for isolation of
desired responses in the EM signature via pulse compression
and spectral decomposition. For purposes of illustration, in
this paper the SSM is reviewed by application to two simple
EM problems, namely, Fresnel reflection by a dielectric slab
and the extraction of creeping waves using Mie scattering by
a PEC sphere. The method has been applied to isolate the
leading-edge reflection and multiple internal reflections of the
slab. It is shown that range-classification of the singularities
in the response enables characterization of the isolated
reflected waves using a low model-order SSM representation.
In the second example, we have analyzed the extraction of
creeping waves from Mie scattering by a PEC sphere in the
absence of noise. The SSM estimates of the extracted
creeping wave have been validated by comparison with an
analytically derived expression of the creeping wave. Next,
random white Gaussian noise is added to the Mie series
solution, and Monte Carlo simulation is performed to examine
robustness of the SSM estimates to noise. Numerical
considerations such as SNR, singular value spectrum and
order determination are addressed in detail for both of these
examples. The reader is referred to [40]-[43] for application
of SSM to feature identification using monostatic RCS
measured data on stationary targets as well as human subjects.
As we have shown in [40], the isolation of electromagnetic
wave species of interest, such as creeping waves, multiply
diffracted waves and specular scattering, yields a better
understanding of the physics behind wave propagation around
curved dielectric or coated structures, thereby improving the
accuracy of feature extraction or target identification.

APPENDIX

In terms of the finite-rank observability matrix
Qe CY DM computed from the SVD in (25) as

Q=[c c1 ca£ - A ca ] (@)

the state transition or the open-loop matrix 4eC" is
determined by the solution to the matrix equation

Q—rl,‘A = Q-l-l > (50)
with
O, =[ca c£ ca ca ], (s
. 2 N--1
Q,=[C c4 c4 ca L (52)

It is observed that the matrices Q ,, and Q_,, are obtained by

deleting the first and last rows, respectively, of the matrix Q
in (49). Using the pseudo-inverse least squares on (50), we
obtain the state transition matrix 4 given in (26) and repeated
below.
A= (Q:'(Q—rl )71 Qir(ﬁ—rl' (53)
This matrix may also be derived from the controllability
matrix I" e C"** derived from the SVD in (25) as
T=[B 4B 4B 4B A7Bl. (54)

It follows that the state transition matrix A satisfies the matrix
equation

AU , =T, (55)

with
f_c,:[AB A*B A’B AL"B], (56)
I, =[B 4B 4'B A7B]. (57)

Egs. (56) and (57) are obtained by deleting the first and last
columns, respectively, of the controllability matrix I in (54).
By solving (55) for 4 using the pseudo-inverse least squares
method, equivalent to (53), we obtain (also see (27))

A= I:fcll:‘icl (f‘fcl‘f‘ic(‘)il‘

(58)

Next, we address the computation of control and
observation matrices, B and C, respectively, using two
alternative approaches. In the first approach, it follows from
(49) that the observation matrix C is simply given by the first
row of the observability matrix,

C=Q(,). (59)

Alternatively, the IIR approximation, j(k), of the data

sequence y(k), k=1,2,---N, can be computed in terms of

the state matrices using (16) as
P(k)y=CA"'B, k=1,2,---N. (60)

We define the augmented observability matrix employing all
the N samples:

O, =[c ca4 cr ca 17 (1)
which is related to the impulse response in (60) as
Q,B=7". (62)
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Therefore, in order to minimize the error between the model
7 and the measured data vector y, the control matrix B is

computed by the pseudo-inverse least squares method, as
shown below.

B=(0,Q,) &5 (63)

In summary, in the first approach, one may calculate the
matrices C and B from the observability matrix Q, using (59)
and (63), respectively.

Alternatively, in the second approach, B is computed from

the first column of the controllability matrix in (54) as

B=T(.1). (64)

and C follows from the least squares fit between the data
sequence y(k), and the state-space IIR approximation (k)

in (60), as shown next. In terms of the augmented
controllability matrix

I,=[B 4B 4'B A4"'B], (65)
the estimation problem for C may be written as
CT, =3, (66)
and its pseudo-inverse least squares solution yields
C =30 @, )™ (67)

To summarize, it is emphasized that there are two
expressions for the state transition matrix, 4, and two
corresponding alternative approaches to computing B and C.
The matrix 4 may be computed from either the observability
matrix using (53), or the controllability matrix using (58).
Correspondingly, the matrices B and C must be computed by
using either (63) and (59), or (64) and (67), respectively. In
order to improve the estimation accuracy in a low SNR
environment, we almost always employ the least-squares
computations (63) and (67) to estimate B and C, respectively,
and seldom use (64) and (59).
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